Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Cem Cüneyt Ersanlı, ${ }^{\text {a* }}$ Mustafa Odabaşoğlu, ${ }^{\text {b }}$ C Ciğdem Albayrak, ${ }^{\text {b }}$ Orhan Büyükgüngör ${ }^{\mathrm{a}}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.070$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Acetylanilinium chloride monohydrate

The crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$.$\mathrm{H}_{2} \mathrm{O}$, is composed of 4-acetylanilinium cations, chloride anions and water molecules of crystallization. The crystal packing features stacking interactions between the aromatic rings, with stacks running along the c axis of the crystal, as well as extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding which involves all five 'active' H atoms and links cations, anions and water molecules into a three-dimensional framework.

Comment

The title salt, (I), is composed of 4-acetylanilinium $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+}\right)$cations, chloride anions and water molecules of crystallization. The cation is a protonated aniline derivative (Fig. 1); protonation results in a lengthening of the $\mathrm{C} 1-\mathrm{N} 1$ bond to 1.454 (2) \AA. This bond is significantly longer than that in non-protonated anilines [1.335 (3) Å (Goswami et al., 1999), 1.386 (4) \AA (Ploug-Sørensen \& Andersen, 1985) and 1.391 (3) \AA (Ploug-Sørensen \& Andersen, 1986)] and is typical for anilinium cations [1.464 (2) \AA (Ploug-Sørensen \& Andersen, 1985) and 1.460 (2) \AA (Ploug-Sørensen \& Andersen, 1986)].

(I)

The most significant feature of the crystal packing is the stack of aromatic rings running along the c axis of the crystal; the distances between the centroids of neighbouring rings within the stack are 3.647 (2) and 3.648 (2) \AA (Fig. 2). The chloride anions occupy the channels between the stacks.

All five 'active' H atoms in the structure are involved in hydrogen bonds of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ types (Table 2), linking all entities present in the structure into an infinite three-dimensional framework.

Figure 1

An ORTEP-3 (Farrugia, 1997) view of the cation, anion and water molecule in the structure of the title compound, showing the atomlabelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Received 23 December 2003
Accepted 2 February 2004
Online 20 February 2004

Figure 2
View of the packing of the title compound. Hydrogen bonds are shown as dashed lines.

Experimental

The title compound, (I), was prepared by bubbling gaseous hydrogen chloride through a solution of 4-acetylaniline (2 g) in ether (50 ml) for 15 min at an approximate flow rate of $80 \mathrm{ml} \mathrm{min}^{-1}$. The precipitate was filtered off and recrystallized from a mixture of ethanol and concentrated hydrochloric acid. The recrystallized product was dried in a desiccator, first over potassium hydroxide and then over phosphorus pentoxide.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
 $M_{r}=189.64$
 Monoclinic, $C c$
 $a=7.690$ (1) \AA
 $b=17.930(1) \AA$
 $c=7.095$ (1) \AA
 $\beta=95.70(1)^{\circ}$
 $V=973.4(2) \AA^{3}$
 $Z=4$

$D_{x}=1.294 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9241
\quad reflections
$\theta=2.3-28.9^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, light yellow
$0.30 \times 0.21 \times 0.21 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: numerical
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.915, T_{\max }=0.928$
7188 measured reflections
2447 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.070$
$S=0.96$
2447 reflections
136 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	$1.454(2)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.211(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.4(1)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.5(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$118.74(13)$	$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$	$118.8(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4$	$119.7(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.89	1.94	$2.826(2)$	175
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} 1 W \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.85(4)$	$2.32(4)$	$3.147(2)$	$165(3)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Cl} 1^{\text {iii }}$	$0.88(3)$	$2.21(3)$	$3.084(2)$	$174(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	0.89	2.21	$3.089(2)$	171
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1 W$	0.89	1.81	$2.697(2)$	175

Symmetry codes: (i) $x-1,1-y, z-\frac{1}{2}$; (ii) $x, y, 1+z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.

The aromatic and water H atoms were refined isotropically. In the aromatic ring, the refined $\mathrm{C}-\mathrm{H}$ distances are in the range 0.92 (2)0.98 (2) A. In the water molecule, the $\mathrm{O}-\mathrm{H}$ distances are 0.85 (4) and 0.88 (3) \AA. The methyl and anilinium N -bound H atoms were included in the refinement in a riding-model approximation, with C $\mathrm{H}=0.96 \AA, \mathrm{~N}-\mathrm{H}=0.89 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}$ (carrier atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goswami, S., Mahapatra, A. K., Ghosh, K., Nigam, G. D., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 87-89.
Ploug-Sørensen, G. \& Andersen, E. K. (1985). Acta Cryst. C41, 613-615.
Ploug-Sørensen, G. \& Andersen, E. K. (1986). Acta Cryst. C42, 1813-1815.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

